70 research outputs found

    A Comparison Between Coupled and Decoupled Vehicle Motion Controllers Based on Prediction Models

    Get PDF
    In this work, a comparative study is carried out with two different predictive controllers that consider the longitudinal jerk and steering rate change as additional parameters, as additional parameters, so that comfort constraints can be included. Furthermore, the approaches are designed so that the effect of longitudinal and lateral motion control coupling can be analyzed. This way, the first controller is a longitudinal and lateral coupled MPC approach based on a kinematic model of the vehicle, while the second is a decoupled strategy based on a triple integrator model based on MPC for the longitudinal control and a double proportional curvature control for the lateral motion control. The control architecture and motion planning are exhaustively explained. The comparative study is carried out using a test vehicle, whose dynamics and low-level controllers have been simulated using the realistic simulation environment Dynacar. The performed tests demonstrate the effectiveness of both approaches in speeds higher than 30 km/h, and demonstrate that the coupled strategy provides better performance than the decoupled one. The relevance of this work relies in the contribution of vehicle motion controllers considering the comfort and its advantage over decoupled alternatives for future implementation in real vehicles.This work has been conducted within the ENABLE-S3 project that has received funding from the ECSEL Joint Undertaking under Grant Agreement No 692455. This work was developed at Tecnalia Research & Innovation facilities supporting this research

    A Complete Framework for a Behavioral Planner with Automated Vehicles: A Car-Sharing Fleet Relocation Approach

    Get PDF
    Currently, research on automated vehicles is strongly related to technological advances to achieve a safe, more comfortable driving process in different circumstances. The main achievements are focused mainly on highway and interurban scenarios. The urban environment remains a complex scenario due to the number of decisions to be made in a restrictive context. In this context, one of the main challenges is the automation of the relocation process of car-sharing in urban areas, where the management of the platooning and automatic parking and de-parking maneuvers needs a solution from the decision point of view. In this work, a novel behavioral planner framework based on a Finite State Machine (FSM) is proposed for car-sharing applications in urban environments. The approach considers four basic maneuvers: platoon following, parking, de-parking, and platoon joining. In addition, a basic V2V communication protocol is proposed to manage the platoon. Maneuver execution is achieved by implementing both classical (i.e., PID) and Model-based Predictive Control (i.e., MPC) for the longitudinal and lateral control problems. The proposed behavioral planner was implemented in an urban scenario with several vehicles using the Carla Simulator, demonstrating that the proposed planner can be helpful to solve the car-sharing fleet relocation problem in cities.This research was funded by the Goberment of the Basque Country (funding no. KK-2021/00123 and IT1726-22) and the European SHOW Project from the Horizon 2020 (funding no. 875530)

    Intelligent Torque Vectoring Approach for Electric Vehicles with Per-Wheel Motors

    Get PDF
    Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve these objectives, the development of suitable Advanced Driver-Assistance Systems (ADAS) is required. Although traditional control techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV) system, composed of a neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator which provides 3 times more accurate estimations than analytical approaches.The research leading to these results has been supported by the ECSEL Joint Undertaking under Grant agreement no. 662192 (3Ccar).This Joint Undertaking receives support from the European Union Horizon 2020 research and innovation program and the ECSEL member states

    Sensorized Tip for Monitoring People with Multiple Sclerosis that Require Assistive Devices for Walking

    Get PDF
    Multiple Sclerosis (MS) is a neurological degenerative disease with high impact on our society. In order to mitigate its effects, proper rehabilitation therapy is mandatory, in which individualisation is a key factor. Technological solutions can provide the information required for this purpose, by monitoring patients and extracting relevant indicators. In this work, a novel Sensorized Tip is proposed for monitoring People with Multiple Sclerosis (PwMS) that require Assistive Devices for Walking (ADW) such as canes or crutches. The developed Sensorized Tip can be adapted to the personal ADW of each patient to reduce its impact, and provides sensor data while naturally walking in the everyday activities. This data that can be processed to obtain relevant indicators that helps assessing the status of the patient. Different from other approaches, a full validation of the proposed processing algorithms is carried out in this work, and a preliminary study-case is carried out with PwMS considering a set of indicators obtained from the Sensorized Tip’s processed data. Results of the preliminary study-case demonstrate the potential of the device to monitor and characterise patient status

    A Fail-Operational Control Architecture Approach and Dead-Reckoning Strategy in Case of Positioning Failures

    Get PDF
    Presently, in the event of a failure in Automated Driving Systems, control architectures rely on hardware redundancies over software solutions to assure reliability or wait for human interaction in takeover requests to achieve a minimal risk condition. As user confidence and final acceptance of this novel technology are strongly related to enabling safe states, automated fall-back strategies must be assured as a response to failures while the system is performing a dynamic driving task. In this work, a fail-operational control architecture approach and dead-reckoning strategy in case of positioning failures are developed and presented. A fail-operational system is capable of detecting failures in the last available positioning source, warning the decision stage to set up a fall-back strategy and planning a new trajectory in real time. The surrounding objects and road borders are considered during the vehicle motion control after failure, to avoid collisions and lane-keeping purposes. A case study based on a realistic urban scenario is simulated for testing and system verification. It shows that the proposed approach always bears in mind both the passenger’s safety and comfort during the fall-back maneuvering execution.This research was funded by AutoDrive within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement number 737469

    Longitudinal Model Predictive Control with comfortable speed planner

    Get PDF
    Guaranteeing simplicity and safety is a real challenge of Advanced Driver Assistance Systems (ADAS), being these aspects necessary for the development of decision and control stages in highly automated vehicles. Considering that a human-centered design is generally pursued, exploring comfort boundaries in passenger vehicles has a significant importance. This work aims to implement a simple Model Predictive Control (MPC) for longitudinal maneuvers, considering a bare speed planner based on the curvature of a predefined geometrical path. The speed profiles are constrained with a maximum value at any time, in such way that total accelerations are lower than specified constraint limits. A double proportional with curvature bias control was employed as a simple algorithm for lateral maneuvers. The tests were performed within a realistic simulation environment with a virtual vehicle model based on a multi-body formulation. The results of this investigation permits to determine the capabilities of simplified control algorithms in real scenarios, and comprehend how to improve them to be more efficient.Authors want to acknowledge their organization. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737469 (AutoDrive Project). This Joint Undertaking receives support from the European Unions Horizon 2020 research and innovation programme and Germany, Austria, Spain, Italy, Latvia, Belgium, Netherlands, Sweden, Finland, Lithuania, Czech Republic, Romania, Norway. This work was developed at Tecnalia Research & Innovation facilities supporting this research

    Entorno de simulación para vehículos automatizados con CARLA

    Get PDF
    [Resumen] El interés alrededor de los vehículos automatizados (VA) ha crecido considerablemente en los últimos años debido a la necesidad de conseguir un método de transporte más eficiente y seguro. Sin embargo, el desarrollo de esta tecnología es una tarea muy compleja, ya que es necesario validar e integrar una gran variedad de funcionalidades. Así mismo, el número de escenarios particulares que se requieren estudiar para asegurar una exitosa automatización hace que el testeo en carreteras reales no sea viable. Debido a esto, ha aumentado el interés por invertir en el desarrollo de entornos de validación virtuales, pudiendo encontrar tanto soluciones comerciales como de código abierto. En este trabajo se propone un entorno de simulación para aplicaciones de vehíıculos automatizados basado en CARLA, en el que se integran, por un lado, un mapa de una manzana de Bilbao y, por otro, el modelo de un Renault Twizy. De esta forma, se introducen las bases para validar futuros desarrollos en esta misma ubicación real.[Abstract] In recent years the interest in automated vehicles (AV) have increased due to the need of a safer and more efficient way of travelling. However, the validation of this technology is rather a complex task. Additionally, the amount of particular scenarios for which the technologies have to be tested makes the practical validation not a viable option. That is why recently the virtual testing environments are gaining a lot of popularity. In this work a testing environment is proposed using the open source simulator CARLA, in which a map of a part of Bilbao and a model of a Renault Twizy are integrated. Thanks to this work, future AV related work will be validated with real world data.Gobierno Vasco; ELKARTEK KK-2021/0012

    A Reconfigurable Framework for Vehicle Localization in Urban Areas

    Get PDF
    Accurate localization for autonomous vehicle operations is essential in dense urban areas. In order to ensure safety, positioning algorithms should implement fault detection and fallback strategies. While many strategies stop the vehicle once a failure is detected, in this work a new framework is proposed that includes an improved reconfiguration module to evaluate the failure scenario and offer alternative positioning strategies, allowing continued driving in degraded mode until a critical failure is detected. Furthermore, as many failures in sensors can be temporary, such as GPS signal interruption, the proposed approach allows the return to a non-fault state while resetting the alternative algorithms used in the temporary failure scenario. The proposed localization framework is validated in a series of experiments carried out in a simulation environment. Results demonstrate proper localization for the driving task even in the presence of sensor failure, only stopping the vehicle when a fully degraded state is achieved. Moreover, reconfiguration strategies have proven to consistently reset the accumulated drift of the alternative positioning algorithms, improving the overall performance and bounding the mean error.This research was funded by the University of the Basque Country UPV/EHU, grants GIU19/045 and PIF19/181, and the Government of the Basque Country by grants IT914-16, KK-2021/00123 and IT949-16

    Validation of a Real-Time Capable Multibody Vehicle Dynamics Formulation for Automotive Testing Frameworks Based on Simulation

    Get PDF
    The growing functionalities implemented on vehicles have increased the importance of simulation in the design process. This complexity is mainly driven by the introduction of electrified powertrains, Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS). Additionally, the automotive industry must reduce development times and cost, while keeping flexible development capabilities and fulfilling demanding regulation standards for safety-critical systems. Existing testing frameworks based on simulation implement typically analytical models to ensure real-time performance, and provide limited flexibility to perform Hardware in the Loop (HiL) setup based tests. In this work a vehicle modelling approach which guarantees high accuracy and real-time capabilities is proposed. Moreover, the proposed approach is validated firstly with real vehicle data, demonstrating that it can fairly reproduce the behaviour of the vehicle tested; and secondly, in a HiL setup to demonstrate the real-time execution capabilities of the approach

    Estimadores de fuerza y movimiento para el control de un robot de rehabilitación de extremidad superior

    Get PDF
    [Resumen] Con el fin de controlar adecuadamente los robots de rehabilitación, es imprescindible conocer la fuerza y el movimiento de interacción entre el usuario y el robot. Sin embargo, la medición directa a través de sensores de fuerza y posición no sólo aumenta la complejidad del sistema, sino que eleva el coste del dispositivo. Como alternativa a la medición directa, en este trabajo, se presentan nuevos estimadores de fuerza y movimiento para el control del robot de rehabilitación de extremidades superiores Universal Haptic Pantograph (UHP). Estos estimadores están basados en el modelo cinemático y dinámico del robot UHP y en las mediciones de sensores de bajo coste. Con el objetivo de demostrar su eficacia, se han realizado varias pruebas experimentales. Estas pruebas comparan la respuesta del controlador con sensores adicionales y con los nuevos estimadores de fuerza y movimiento. Los resultados han revelado que el rendimiento del controlador es similar con los dos enfoques (inferior a 1N de diferencia en el error cuadrático medio). Esto indica que los estimadores de fuerza y movimiento propuestos pueden facilitar la implementación de controladores de robots de rehabilitación.Ministerio de Economía y Competitividad; DPI-2012-32882Ministerio de Economía y Competitividad; BES-2013-066142Gobierno Vasco; PRE-2014-1-152Gobierno Vasco; IT914-16Universidad del País Vasco/Euskal Herriko Unibertsitatea; PPG17/5
    corecore